Sparsity-Aware STAP Algorithms Using L1-norm Regularization For Radar Systems
نویسندگان
چکیده
This article proposes novel sparsity-aware spacetime adaptive processing (SA-STAP) algorithms with l1-norm regularization for airborne phased-array radar applications. The proposed SA-STAP algorithms suppose that a number of samples of the full-rank STAP data cube are not meaningful for processing and the optimal full-rank STAP filter weight vector is sparse, or nearly sparse. The core idea of the proposed method is imposing a sparse regularization (l1-norm type) to the minimum variance (MV) STAP cost function. Under some reasonable assumptions, we firstly propose a l1-based sample matrix inversion (SMI) to compute the optimal filter weight vector. However, it is impractical due to its matrix inversion, which requires a high computational cost when in a large phased-array antenna. Then, we devise lower complexity algorithms based on conjugate gradient (CG) techniques. A computational complexity comparison with the existing algorithms and an analysis of the proposed algorithms are conducted. Simulation results with both simulated and the Mountain Top data demonstrate that fast signal-to-interference-plus-noise-ratio (SINR) convergence and good performance of the proposed algorithms are achieved.
منابع مشابه
L1-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar
In this paper, we propose novel l1-regularized spacetime adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose...
متن کاملSparsity-Aware Affine Projection Algorithm for System Identification
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity r...
متن کاملSpace-time Adaptive Processing Based on Weighted Regularized Sparse Recovery
In this paper, novel space-time adaptive processing algorithms based on sparse recovery (SR-STAP) that utilize weighted l1-norm penalty are proposed to further enforce the sparsity and approximate the original l0-norm. Because the amplitudes of the clutter components from different snapshots are random variables, we design the corresponding weights according to two different ways, i.e., the Cap...
متن کاملStructured Sparsity via Alternating Direction Methods ∗ Zhiwei ( Tony
We consider a class of sparse learning problems in high dimensional feature space regularized by a structured sparsity-inducing norm that incorporates prior knowledge of the group structure of the features. Such problems often pose a considerable challenge to optimization algorithms due to the non-smoothness and non-separability of the regularization term. In this paper, we focus on two commonl...
متن کاملStructured Sparsity via Alternating Direction Methods
We consider a class of sparse learning problems in high dimensional feature space regularized by a structured sparsity-inducing norm that incorporates prior knowledge of the group structure of the features. Such problems often pose a considerable challenge to optimization algorithms due to the non-smoothness and non-separability of the regularization term. In this paper, we focus on two commonl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1304.3874 شماره
صفحات -
تاریخ انتشار 2013